Q1.

$2 \qquad \left(2x - \frac{3}{x}\right)^{5}$		
(i) $32x^5 - 240x^3 + 720x$	3 × B1 [3]	co. SC B2 for other 3 terms (i.e. ascending)
(ii) $\left(1+\frac{2}{x^2}\right)(32x^5-240x^3+720x)$		
Coeff of x (1 × 720) + (2 × -240) \rightarrow 240	M1 A1√	Looks at exactly 2 terms. co from his answer to (i).

Q2.

2 (i)
$$\left(x - \frac{2}{x}\right)^6 = x^6 - 12x^4 + 60x^2$$
 B1 ×3 [3]

(ii) $\times (1 + x^2) \rightarrow 60 - 12 = 48$ M1 A1 $\sqrt{ }$ Must be exactly 2 terms. $\sqrt{ }$ from his (i).

Q3.

1	$^{7}C_{2} x^{5} \left(\frac{2}{x^{2}}\right)^{2}$ SOI and leading to final answer	B2	B1 for 2/3 parts correct leading to ans.
	84 or 84x as final answer	B1 [3]	If no answer; 84x seen scores B2, else ${}^{7}\text{C}_{2} x^{5} \left(\frac{2}{x^{2}}\right)^{2}$ scores SCB1 only

Q4.

1
$$(a+x)^5 + (1-2x)^6$$

Coeff of x^3 in $1^{st} = 10 \times a^2$
Coeff of x^3 in $2^{nd} = 20 \times (-2)^3$
 $\Rightarrow 10a^2 - 160 = 90$
 $\Rightarrow a = 5$

B1 co

B1 + B1

Forming an equation for $a +$ solution

co (condone \pm)

Q5.

2 $[7C3] \times [(2x^3)^4] \times [(-1/x^2)^3]$ seen soi 35 $\times 2^4 \times (-1)^3$ leading to their answer soi -560(x^6) as answer	B1B1 B1 B1 [4	2 elements correct, 3 rd element correct 2 elements correct. Identifying reqd term SC B3 for [560(x) ⁶] as answer
--	---------------------	--

Q6.

3 $(1-2x)^2(1+ax)^6$		
Coeff of x in $(1+ax)^6 = 6ax$	B1	6C1 needs removing (here or later)
Coeff of x^2 in $(1+ax)^6 = 15a^2x^2$	B1	6C2 needs removing (here or later)
Multiplies by $(1 - 4x + 4x^2)$	MI	Needs to consider 2 terms in equation
2 terms in x $6a-4=-1$ $\rightarrow a=\frac{1}{2}$	A1	Со
3 terms in x^2 15 a^2 – 24 a + 4 = b	M1	Needs to consider 3 terms in equation
$\rightarrow b = -4\frac{1}{4}$	A1	
	[6]	

Q7.

2 (i) $1-6px +15p^2x^2$	B1B1 [2]	Simplificn of nCr can be scored in (ii)
(ii) $15p^2 \times 1 - 6p \times -1$ 3p(5p+2) = 0	M1 DM1	Obtain & attempt to solve quadratic
$p\frac{2}{5}$ oe	A1 [3]	Allow $p = 0$ in addition

Q8.

4 (i)	$(2+ax)^5 = 32 + 80ax + 80a^2x^2$	3 × B1	[3]	B1 for each term.
(ii)	$\times (1 + 2x)$ 240 = 80 a^2 + 160 a $\rightarrow a$ = 1 or a = -3.	M1 DM1A1	[3]	Realises need to consider 2 terms. Solution of 3-term quadratic.

Q9.

3 (i)	$(2-x)^6 64 - 192x + 240x^2$	3 × B1 [3]	co Allow 2 ⁶ .
(ii)	$(1 + 2x + ax^2)(2 - x)^6$ Coeff of $x^2 = 240 - 384 + 64a$ Equates to 48 $\rightarrow a = 3$	M1 M1 A1	Considers at least 2 terms in x^2 . Considers exactly 3 terms + solution co

Q10.

2	$(1+ax)^6$				
	Term in $x = 6ax$	B1		co	
	Equate with $-30 \rightarrow a = -5$	B1√		$\sqrt{\text{ from his answer for } 6ax}$	
	Term in $x^3 = \frac{6.5.4}{3!} a^3$	В1		со	
	→ coefficient of – 2500	В1√		For $20 \times a^3$	
	\$ proper to a compression to the most of the second of the	400,000	[4]		

Q11.

1	°C ₆ or °C ₃ used	M1		
	$\left(\frac{1}{x^2}\right)^3$ seen	B1		
	-84	A1	[2]	Correct answer only ⇒ 3marks
			131	

Q12.

1	$ 6C4 \times [2(x)]^4 \times \left[\frac{1}{(x^2)}\right]^2$	B2		B1 for 2/3 terms correct
	240	В1	[3]	Identified as answer. Allow 240x ⁰

Q13.

1	$k^2 \times \left(\frac{1}{3(x)}\right)^2 \times 10$ (or correct factorials)	B2	B1 for 2/3 terms correct
	990	B1 [3]	cao
	$10 \times k^2 \times \frac{1}{9} - 30 \Rightarrow k - 3$		

Q14.

4	(i) $(2x-x^2)^6 = 64x^6 - 192x^7 + 240x^8$	B1B1B1 [3]	cao
	(ii) $\times (2+x)$ coeff of $x^{B} = 2 \times 240 - 192$ 288	M1 A1√ [2]	Looks at exactly 2 terms

Q15.

powers 4 and 3 35 seen or implied	M1	
–70	B1	
3.53	A1	
	[3]	

Q16.

1	(i)	$64 + 576x + 2160x^2$	B1B1B1 [3]	Can score in (ii)
	(ii)	$576a(x^2) + 2160(x^2) - 0$	M1	
		$a = -\frac{2160}{576}$ oe (eg $-\frac{15}{4}$) or -3.75	A1 [2]	

Q17.

8 (i)	81 (x ⁸)	B1 [1]	
(ii)	10×3^3 (x^8) soi leading to their answer 270 (x^8)	B1B1 B1 [3]	B1 for 10, 5C2 or 5C3. B1 for 3 ³ . But must be multiplied.
(iii)	k × (i) 405 soi + (ii) 675 (x ⁸)	M1 A1 DM1 A1 [4]	k ≠ 1,0